Machine Learning in Education

Payam Goodarzi'

Abstract—1It is indeed beyond question, that Machine Learn-
ing (ML) has been prevailing over the last decade. ML has
already proved its tremendous power and suitability for solving
difficult problems in the realm of computer science. This rapid-
growing branch of artificial intelligence (AI) is arresting a great
deal of attention on itself due to its promising results, and it
keeps getting harder to find an area, where no trace of ML could
be found. One of its interesting applications is in education.
As the number of E-Learning systems continuously rises, ML
contributes more and more to improve the performance of
these systems to accomplish the ultimate objective, which is
simplicity and effectiveness of the learning process. ML can
help E-Learning systems in many different ways to become
more intelligence than before, for instance by analyzing the
performance and learning behaviour of students individually,
which can provide useful information for adjusting the tutoring
system appropriately. By taking this into consideration, that AI
has a revolutionary influence on education, one question arises,
will be able to replace the teachers entirely in the nearest future
with ML? Well, It is certainly a fishy question. In order to
answer this question, i believe we should have a deeper insight
into the technical parts of Intelligence Tutoring Systems (ITSs).
In this paper we bring one highly intelligence ITS [1] into focus,
which employs Reinforcement Learning (RL) to induction of
effective and adaptive pedagogical strategies.

I. INTRODUCTION

The capability of solving a wide variety of challenging
problems is the most sensational property of human being.
The main goal of Reinforcement Learning is to artificially
produce it by creating an agent, who like a human can learn
for themselves to achieve successful strategies that lead to
the greatest rewards by interacting with an environment.
This paradigm of learning by trial-and-error, solely from
rewards or punishments, molds somehow our real life. As it’s
demonstrated in figure 1 generally all RL Systems consist of
an Agent and an Environment. The agent acts, thereby goes
from one state to another and instead receives feed-backs
from environments. Based on the feed-backs the agent try
to improve its actions, in a manner that leads him to the
goal with the highest possible reward. To instantiate, in one
ITS teacher plays the role of the agent and students are the
environment. During the tutoring process the teacher makes
decision at each state and proceed to next state. States in ITS
could be a set of all possible steps in a tutoring workflow
from the beginning to the end, where the teaching process is
over. One piece of this puzzle is missing! right, the Reward.
When the teacher gets feed-backs? in ITSs, where the RL
algorithms are applied like Policy Iteration in [1], defining a
proper reward function is problematic. Providing immediate

1Payam Goodarzi is computer science master student at the free university
of berlin payam.goodarzi@fu-berlin.de

. Action

e Feedback
E State

Fig. 1.

—4

Reinforcement Learning.

feed-backs is more effective than receiving delayed feed-
backs. Short-term returns allow the agent to react quicker
and rectify its actions appropriately, eventually this leads to
an more adaptive behaviour. But in ITSs like [1] the feed-
backs are not available until the whole tutoring is over. In
this case we deal with long-term feed-backs, that complicate
it to track those specific actions, which yield to the highest
reward value. One way to overcome this issue is to propagate
back the reward value by putting a so called discount factor
into the calculation, we investigate it more in section III.

In general RL algorithms are classified into two types
depending on the agent understanding and perception of
the environment, model-based and model-free. By model we
mean anything that an agent can use to predict how the
environment will respond to its actions. As mentioned before
in [1] policy iteration was used, which is one model-based
algorithm, since the agent relies on exploratory gathered data
and models the environment by means of that. In section
IV we will see more of the exploratory corpus in [1]. The
foundation of almost every RL system is Markov Decision
Process (MDP). Section II explains briefly about MDP and
why a markovian process can be extended to a RL system.

After the introductory sections we delve into the work
done by [1] and see closely how policy iteration improves
the learning gain of students by allowing the Cordillera [2]
to tailor its behaviour with respect to needs of students.
Cordillera [2] is the ITS involved in this project, a Natural
Language (NL) tutoring system, which teaches students
introductory physics.

II. MARKOV DECISION PROCESS

MDP provides the framework to model a system. Every
system, that can be considered as a sequential decision pro-
cess wherein, at each discrete step the system is responsible
for selecting the next action to take, is a MDP. With other
words each decision making process, that satisfy the Markov

Fig. 2. Example for MDP. A grid, where the agent starts from S and the
goal is to reach G with highest reward value.

Property, is one MDP and can be handled mathematically.
Markov property refers to memoryless property of a stochas-
tic process, it means, that conditional transition probability
to future state depends only upon the present state, not on
the sequence of events that preceded it. The following are
the main components of a MDP:

« State set: S It is a set of all states in the environment.

o Action set: A(s) Set of all possible actions, that the
agent can take.

e Model or Transition probability: 7'(s,a,s’) ~
Pr(s'|s,a) Probability of going from state s to s’ taking
action a.

o Reward function: R(s), R(s,a,s’) The feed-back
given, if the agent goes from state s to s’ by taking
action a.

« Policy: 7 (s) — a Given state s, it outputs the action to
take. We actually look for the optimal policy 7*.

The grid in figure 2 is a widely used example in
RL books or tutorial, we use it also to get a better
sense of MDP. In this example states are the cells of
the grid, the agent has only these possible actions A =
move — up, move — down, move — right, move — left,
the rewards of grey cells is 0.5 and the red one -1, so the
agent should avoid the red cell. Starting from S the goal is
to reach the cell G by moving through the cells with the
highest final reward values. The optimal policy 7* would
be the best sequence of actions, that maximizes the sum of
all rewards given on the way from S to G.

As exemplified here, ITSs are also in some way a real-
life example of MDP. For many types of E-Learning envi-
ronments, the system’s behaviour can be also viewed as a
sequential decision process. The teacher begins the tutoring
from a start point .S and at each state chooses one action from
the set A(s), such as asking a question, telling the student
to proceed, suggesting extra learning material, giving some

hints for solving a problem, showing a video, explaining a
topic, etc. After the teacher reached state G (End of the
tutoring), function R(s) provides a feed-back to the teacher.
The teacher should find the best pedagogical strategy, the
optimal policy 7*, that yields the highest reward, which for
instance in [1] is the learning gain of the student. But how
we can mathematically calculate this optimal policy? Next
section answers this question by putting light on the policy
iteration algorithm, since it’s the main tool used in [1] to
induce the adaptive pedagogical policies.

III. POLICY ITERATION

Policy iteration is a model-based algorithm built upon
a equation called, Bellman Equation, named after Richard
Bellman who introduced dynamic programming in 1953.
Equation 1 is the very celebrated bellman equation and is
simply the average over all possible actions at states s, each
weighted by its probability of occurring, given policy 7 at
state s. The Value function v™(s) states that the value of
the start state s must equal the discounted value of expected
next state plus the reward expected along the way till the
terminal state. With other words it shows us, how good is
to be at state s. v in the equation 1 is the discount factor,
that plays a vital role, it discretizes the value function and
ensures, that the value decreases continuously on the way
to the termination point. Thus the rewards of the beginning
states are more weighted than the last ones, which is great,
since the value of early states (short-term reward) matters
more than the last states (long-term reward) as we discussed
already.

v (s) = Z m(als) ZP(S/\S, a) [r(s,a,s") + 0" (s")]
‘ : (1)

Policy iteration finds the optimal policy 7* by iterating
over all policies. It consists of two parts, at each iteration
it evaluates a policy by calculating the value function v”(s)
and then improves the policy by solving the equation 2.

7(s) < argmaz, Zp(s’\s, a) [r(s,a,s") +yv(s')] (2)
In a finite MDP such as NL tutoring systems in different
domains like math, physic and so forth, policy iteration
can be applied to find the optimal strategy to deliver some
knowledge components to students. In next sections we
evaluate the application of policy iteration on Cordillera [2].

IV. APPLICATION OF RL IN ITS

A team led by Min Chi from Carnegie Mellon Univer-
sity in Pittsburgh attempted to empirically evaluating the
application of reinforcement learning to the induction of
effective and adaptive pedagogical strategies. They addressed
technical challenges in applying RL to Cordillera [2]. The
project is divided into two phases as follow:

« Training phase

« Test phase

In the test phase some sort of evaluations were performed
to find out whether the induced policies by RL fulfill our
expectations. The training phase basically involves defining
an appropriate state representation .S, a reasonable action
space A(s), and an appropriate reward function R(s).

In the training phase a training corpus I' was also collected
by letting 64 students interact with the NL tutoring system
Cordillera, while it took actions randomly. One key different
of this project in comparison to other related works in this
area is that they gathered this training corpus by training hu-
man student not simulated student. Because creating accurate
simulated students is not easy, since studying and analyzing
human learning behaviour is especially challenging and there
is many hidden factors involved in human learning, that are
poorly understood. Collecting data on NL tutoring systems
is very expensive, therefor many previous research used pre-
existing data extracted from logs of other ITSs. The problem
of pre-existing data is, that they are usually not completely
suitable and accurate for a specific tutoring system, at the
other hand pre-processing the data is always a troublesome
task. All these arguments discourage the team of this project
from using the pre-existing data.

For RL, as with all machine learning tasks, success de-
pends upon an effective state representation S. Ideally S
should include all of the relevant dialogue history necessary
to determine which action should be taken next. One obvious
but impractical choice is to use a complete record of the
dialogue to the present point; however, in practice we need
to compress the dialogue history to make the space tractable.
In other words, an effective representation S should be an
accurate and compact model of the learning context. The
challenge thus lies in identifying useful state features. In
more complex domains, state representation S gets bigger
and more complicated, because there are many factors which
might determine whether a student learns well from the ITS.
Hence the states need to include all features for anything
that is likely to influence the learning. In next section we
investigate feature selection procedure in this project.

V. STATE FEATURE SELECTION FOR INDUCING
PEDAGOGICAL POLICIES

A group of experts defined a large set of potential state
features denoted by €2, then /m(maximum number of features)
features were selected by performing some feature selection
techniques. m should be large enough to represent states
included essential features that help the system to take good
decisions. They capped number of features in each policy
at six (m = 6), which means that there can be as many as
26 = 64 rules in the learned policy. There were six different
categories of features involved in this project considered by
previous research [3].

« Autonomy (A): amount of work performed by student.
Exp:[tellsSinceElicitA]

« Background (BG): general background information
about student.

e Problem Solving Contextual (PS): encode infor-
mation about the current problem-solving context.

Exp:[StepSimplicityPS]
o Performance (PM): Exp:[pctCorrectKCPM]
« Student dialogue (SD): characterizes student language.
Exp:[stuAverageWordSD]
« Temporal Situation (T): time related information about
problem solving. Exp:[durationKCBetweenDecisionT]
All of them can be calculated automatically and are
discretized using two clustering procedures: the TwoStep
procedure bounded the number of clusters in SPSS and
the K-means procedure used K-means clustering to locate
the optimal cluster centers. After the discretization the val-
ues had been binarized. For instance StepSimplicityPS that
shows the difficulty level of the current context. we have
StepSimplicityPS : [0,0.38) — 0;[0.38,1] — 1 , which
means if StepSimplicityPS value is below 0.38, it is 0 (hard)
otherwise, it is 1 (easy). So far we have defined the state set
S, next section describes action set A(s).

VI. ACTION SPACE

At each discrete step the tutor can choose between only
two type of decisions in this project.

« Elicit/Tell (ET)

« Justify/Skip-justify (JS)
Human one-on-one tutoring is characterized by a mixture
of elicits and tells. During the tutoring tutor confronts often
with a simple decision, fell a students the next step, or elicit
it from student. Since the tutor should adapt its actions to
the student’s needs based upon their current knowledge and
status ([4]), in such situation most existing ITS decides to
elicit ([5], [6], [7]). Figure 3 compares Elicit and Tell. As
stated before defining an effective reward function is perhaps
the trickiest part of a MDP and specially in ITSs. In next
section we take close look at the approaches made in this
project for evaluation.

(a) Elicit Version
1. T: So let’s start with determining the value of v1.

2. T: Which principle will help you calculate the rock’s
instantaneous magnitude of velocity at T1? {ELICIT}

3. S: definition of kinetic energy

4. T: Please write the equation for how the definition of kinetic
energy applies to this problem at T1 {ELICIT}

5. S: kel =0.5%m*v1"2

6. T: From KE1 = 0.5*m*v1"2, ---

(b) Tell Version
1. T: So let’s start with determining the value of v1.

2. T: To calculate the rock$ instantancous magnitude of velocity at
T1, we will apply the definition of kinetic energy again. {TELL}

3. T: Let me just write the equation for youw: KE1 = 0.5%m*v1"2.
{TELL}

4. T: From KE1 = 0.5*m*v1°2, ---

Fig. 3. Elicit vs Tell.

VII. EVALUATION METRICS AND REWARD FUNCTION
R(s)

Contrary to other works [8], they used only one evaluation
metric for rating the policies, the Expected Cumulative
Reward (ECR). ECR can be calculated as follow:

n

N;
ECR, =y — '
R = L MW,

x V(s;) 3)

where s1,- - , s, is the set of all starting states and v(s;)
is the V-values for state s; ; IV; is the number of times that
s; appears as a start state in the model and it is normalized
by dividing m To put in another way, it calculates
the sum over all the initial start states and weights them by
the frequency with which each state appears as a start state.
The higher the ECR value of a policy, the better the policy
is supposed to perform.

Let assume that we have two states s; and sy, we calculate
the transition probability 7" of these states from the training
corpus I'. Ty (s1|s1,a1) = 3/10 = 0.3 is the probability that
the agent at state s; comes back to state s; taking action a
given that, there were 10 times overall that action a; was
taken. three times out of these the agent transitioned back to
state s1. We have the same for so as follow: T (s2|s2, az2) =
300/1000 = 0.3. The probability that the agent comes back
to state so taking action as is equal to the case, if the agent
at state s; comes back to s; taking a;. While both set of
transitions have the same parameter (17 = 75%), the second
set is more reliable. Clearly ECR lacks reliability, to tackle
this issue Tetreault and Litman [8] proposed a Confidential
Interval (CI) estimate based upon the available data in the
exploratory corpus I.

In this project reward function is based on a Normalized
Learning Gain (NLG). NLG compares the knowledge level
of student before and after the training irrespective of his/her
incoming competence. To evaluate the knowledge of the
students two tests were taken, pretest and posttest. Thereafter
NLG was measured as follow:

NLG — posttest — pretest @)
1 — pretest

Now that the dialogue system is modeled and the 4-tuple
(S, A,T,R) is available we can see one simple example.
The policy shown in figure 4 involves only a single feature
policy, where the tutor can either elicit or tell, with respect to
the value of StepSimplicityPS. StepSimplicityPS is estimated
from the training corpus based on the percentage of correct
answers when the tutor has done an Elicit (i.e., asked a
question). The higher the value of StepSimplicityPS, the
easier is the current context and this particular policy with
ECR value of 8.09 tells the agent to either Elicit or Tell,
while if the StepSimplicityPS is 0 (Rule 1) the tutor should
ask a question (Elicit). CI estimations states, that there is
95% chance that the ECR of the learned policy is between
a lower-bound of 4.37 and an upper-bound of 12.07.

[S:] = {StepSimplicityPS}
[A:] = {Elicit, Tell}

[Policy:]
rule 1: [0] — Elicit
rule 2: [1] — Either Elicit or Tell

ECR: 8.09
95%CI: [4.37,12.07]

Fig. 4.
decision.

Using StepSimplicityPS to induce a single feature policy on ET

To demonstrate, that the policies with more than only
one feature could score higher ECR, we put another ex-
ample policy with three features into comparison with the
single feature policy. The example policy in figure 5 be-
side StepSimplicityPS takes two other feature into account.
TuConceptsToWordsPS : [0,0.074) — 0;[0.074,1] —
1 represent the ratio of the physic concepts to words
in the tutor’s expressions so far. TuAvgWordsSesPS :
[0,22.58) — 0;[22.58, 00] — 1 encodes the average number
of words in tutor turns in a session. This feature reflects
how verbose the tutor is in the current session. Since each
of features was discretized and has two outcome, this three-
feature state representation result in a state space of 23 = 8.
As you can see the three-feature policy has higher ECR
(14,25 vs 8,09) and also the lower-bound value is increased
(18,12 vs 4,37). Thus the three-feature is more effective and
robust than the single-feature policy. This reemphasizes the
importance of the state features and certify the fact, that the
state representation has a strong impact on the outcome of the
whole system. Not necessarily the higher number of features
involved can yield to a better result, but actually the features,
which are highly correlated with the learning gain of students
are more of the interest.

[8:] = {StepSimplicityPS x
TuAvgWordsSesPS}
[A:] = {Elicit, Tell}

TuConceptsToWordsPS x

[Policy:]
[0 0 U]
0:0:1
rules 1-5: 1:0:1 — Elicit
1:1:0
1:1:1
rule 6: [0:1:0 — Tell

— Either Elicit or Tell

Ju—
—_
[T S—

0
rules 7-8: {]

ECR: 14.25
95%CIL: [10.04,18.12]
Fig. 5. An example of selected best policy on ET decisions.

Defined Feature
features occurrences

1 Autonomy (A) 8

2 Background (BG) 5 1

3 Performance (PM) 12 5

4 Problem Solving Contextual (PS) 15 30

5 Student Dialogue (SD) 10 8

6 Temporal Situation (T) 3 7

7 Total 50 59

Fig. 6. Occurrence of six category features in the final tutorial policies.

The table illustrated in figure 6 lists the number of features
defined in each six categories and the feature occurrences in
the final policies. For example we can infer the third and
fourth columns in row 4 in this table, that there are fifteen PS
features defined and they account for thirty out of 59 feature
occurrences in the final tutorial policies. In other words, more
than half of all feature occurrences in the policies were from
PS. Across the 50 features, the most frequent feature Step-
SimplicityPS appears seven times. Interestingly the domain-
oriented features are more involved and affect strongly the
behaviour of the tutor during the tutoring process, which is
somehow an understandable fact. Depending on the domain,
in which the tutoring takes place, the performance of the
ITSs varies. In more complex domains is indeed unlikely to
see the same performance as in the basic domains.

VIII. GENERAL APPROACH AND THE PROCEDURE

All the participants experienced the same procedure as
follow: 1) Background survey (gathering background infor-
mation), 2) Pre-training (to familiarize the students with the
system), 3) Pre-test, 4) Training (interacting with the system
and going through the tutoring process), 5) Post-test. Pre-test
and the Post-test were identical, but the participants were not
aware of that. This project has three stages. Each stage differs
in term of the pedagogical policies employed for interactive
tutorial decisions.

« Stage 1, Exploratory-Cordillera: Cordillera made in-
teractive decisions randomly.

o Stage 2, DichGain-Cordillera: The student’s NLGs
were dichotomized into +100 and -100 as reward func-
tions ([9]).

o Stage 3, NormGain-Cordillera: Used normalized
NLG x 100 as reward function.

Figure 7 shows, that NormGain group outperformed both
the Exploratory and DichGain groups with a significant
margin. The induced pedagogical policies by RL improved
undoubtedly the performance of the Cordillera. The main
difference in the three stages introduced above is the reward
function. Without a reasonable, accurate and effective reward
function the system can not extract the optimal policy be-
tween a large amount of possible policies. Having a smartly
defined reward function helps the agent to make smarter

decisions and take the efficient path, ultimately it enhances
the adaptivity of the agent.

To summarize, we described a practical methodology for
using RL to improve effectiveness of an ITS. In a nutshell
the methodology is to define and tune accurately the 4
components of MDP (S, A, T, R), feeding the system with an
exploratory dataset, applying some feature selection methods
to find the most effective state features, compute the optimal
dialogue policy according to the learned MDP and finally
deploy the induced policies and evaluate the policy on a new
group of users.

Maximum Score is 1
0.70

NormGain

0.65

m DichGain

0.60 - N Exploratory

0.42
0.38

0.42

0.41

"

0.53
0.50 - \\§

0.40 -

0.30 - 0.2

N\

0.20 -

0.10 -

N\

Posttest

0.00 - N\

0.22
Pretest NLG
0.10 -

Fig. 7. Compare three groups learning performance under overall grading.

IX. CONCLUSION

Having evaluated the terrific project [1] as one example of
the application of machine learning in education now i arrive
at my conclusion and try to answer our first question, whether
the teachers will be replaceable with ML in the future?.
The project presented on this paper was done in 2010,
meanwhile many other valuable research in this area had
been developed with the help of new techniques and tools,
such as Recurrent Neural Networks (RNN). For example In
“"Deep Knowledge Tracing” [10] they use a machine that
models the knowledge of a student as they interact with
coursework using RNN. Or the research of the university
of California Berkeley [11] which serves as a foundation
for applying sequential, generative models towards creating
personalized recommenders in Massive Open Online Courses
(MOOQC) using "Long Short-Term Memory” architecture of
the RNN and many other cutting edge projects, that make
progresses and push the boundaries of ML towards the
ultimate goals of E-Learning system, each of these works
are weapons in our arsenal. The progression of artificial
intelligence is indeed undeniable and unstoppable. The burst
of technology in the field of computer science and its rapid
growth during the last century may escalated falsely our
expectations of computers. The tempo of the developments is
not always steady and there is ups and downs. Take a look at
the history of physic, after Isaac Newton it took the humanity
more than about a century, till another genius Albert Einstein
was raised and changed our whole understanding of the

universe and opened a new chapter in physic. The road to
our objective of Al is a long bumpy road. Doubtlessly we
will be some day able to replace the teacher with ML, but it
is excessively optimistic to believe, that this will be realized
within the next ten or even twenty years.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

REFERENCES

Chi, Min, et al. "Empirically evaluating the application of reinforce-
ment learning to the induction of effective and adaptive pedagogical
strategies.”User Modelingand User-Adapted Interaction21.1-2 (2011):
137-180.

VanLehn, K., Jordan, P., Litman, D.: Developing pedagogically ef-
fective tutorial dialogue tactics: Experiments and a testbed. In: Pro-
ceedings of SLaTE Workshop on Speech and Language Technology
in Education ISCA Tutorial and Research Workshop, pp. 1720, 2007b
Forbes-Riley, K., Litman, D.J., Purandare, A., Rotaru, M., Tetreault,
J.R.: Comparing linguistic features for modeling learning in computer
tutoring. In: Luckin, R., Koedinger, K.R., Greer, J.E. (eds.): Artificial
Intelligence in Education, Building Technology Rich Learning Con-
texts that Work, Proceedings of the 13th International Conference on
Artificial Intelligence in Education, AIED 2007, vol. 158 of Frontiers
in Artificial Intelligence and Applications, pp. 270277, Los Angeles,
California, USA, July 913. I0S Press, Amsterdam (2007)

Pain, H., Porayska-Pomsta, K.: Affect in one-to-one tutoring. In: Tkeda,
M., Ashley, K.D., Chan, T.-W. (eds.): Intelligent Tutoring Systems, 8th
International Conference, ITS 2006, p. 817, Jhongli, Taiwan, 2630
June 2006, Proceedings, vol. 4053 of Lecture Notes in Computer
Science. Springer, Berlin (2006)

Koedinger, K.R., Anderson, J.R., Hadley, W.H., Mark, M.A.: Intelli-
gent tutoring goes to school in the big city. Int. J. Artif. Intell. Educ.
8(1), 3043 (1997)

VanLehn, K., Lynch, C., Schulze, K., Shapiro, J.A., Shelby, R., Taylor,
L., Treacy, D., Weinstein, A., Wintersgill, M.: The andes physics
tutoring system: lessons learned. Int. J. Artif. Intell. Educ. 15(3),
147204 (2005)

Litman, D.J., Silliman, S.: Itspoke: an intelligent tutoring spoken
dialogue system. In: Demonstration Papers at HLT-NAACL 2004, pp.
58. Association for Computational Linguistics, Morristown, NJ, USA
(2004)

Tetreault, J.R., Litman, D..:Areinforcement learning approach to
evaluating state representations in spoken dialogue systems. Speech
Commun. 50(89), 683696 (2008)

Chi, M., Jordan, P.W., VanLehn, K., Litman, D.J.: To elicit or to
tell: does it matter?. In: Dimitrova, V., Mizoguchi,R., du Boulay,B.,
Graesser, A.C. (eds.)AIED, pp. 197204. 10S Press,Amsterdam (2009)
Piech, Chris, et al. "Deep knowledge tracing.” Advances in Neural
Information Processing Systems. 2015.

Tang, Steven, Joshua C. Peterson, and Zachary A. Pardos. "Modelling
Student Behavior using Granular Large Scale Action Data from a
MOOC.” arXiv preprint arXiv:1608.04789 (2016).

Sutton, Richard S., and Andrew G. Barto.Reinforcement learning: An
introduction. Vol. 1. No. 1. Cambridge: MIT press, 1998.

