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Priifungsordnung: SPO von 2014 — Master Informatik
Modul: Wissenschaftliches Arbeiten Praktische Informatik A
Lehr- und Prasenzstudium | Formen aktiver Arbeitsaufwand
Lernformen (Semesterwochenstun | Tejlnahme (Stunden)
den = SWS)
Hauptseminar |2 Vortrag, schriftliche Prasenzzeit HS: 30

Ausarbeitung, regelmiRige Vor- und Nachbereitung

Diskussionsbeitrdage HS: 60 :
Priifungsvorbereitung

und Prifung: 60

Modulpriifung:

Schriftliche Ausarbeitung (ca. 4 500 Worter) mit miindlicher Prasentation
(ca. 45 Minuten); die Modulprtifung wird nicht differenziert bewertet.

Arbeitszeitaufwa
nd insgesamt:

150 Stunden

5LP
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Overview

* Machine Learning

* Reinforcement Learning (RL)

» Markov Decision Process (MDP)

* Value Function

* Policy Iteration (Bellman Equation)

» Application of RL to induce pedagogical policies
e Summary

» References
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Machine Learning

* Supervised learning:
Given the input and labelled output, find the function, which maps the input
to output.

* Unsupervised learning:
Given unlabelled data, infer the function, which describes the hidden
structure in data.

* Reinforcement learning:
Taking actions base on received rewards in an environment (Trial-and-Error)
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Reinforcement learning (RL)

' Action

e Feedback
G State

—4
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Reinforcement learning (RL)

Planning

Model ﬁ Policy

By model we mean anything that an agent can use to predict how the
environment will respond to its actions.

Planning refers to any computational process that takes a model as input and
produces or improves a policy for interacting with the modeled environment.

* Model-based RL: Policy lteration, Value Iteration, etc.
* Model-free RL: Q-Learning, Temporal difference learning, Monte Carlo, etc.
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Markov Decision Process

A RL task that satisfies the Markov Property is called a Markov Decision Process.

PI'{Rt+1 =7,5¢+1 = 5'|S0, 4g, Ry, ---:St—l;At—LRtrStrAt}

Environment's response at ¢+ 7 depends only on the state and action
representation at ¢

Pr{Rey1 =7, S¢41 = 'S, Ae}

States: S

Model: T(s, a, s*) ~ Pr(s'| s, a)
Actions: A(s), A

Reward: R(s), R(s, a), R(s, a, s')
Policy: t(s) — a

Optimal policy:  *
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Value Function

It estimates how good is for the agent to be in a given state.

e State-value function for policy .

vi(s) =E # R(s)

D Y RE)Im S, = s
t=0

e Action-value function for policy m.

q"(s,a) = E

ZVtR(StN M5S0 =S,40 = a]
t=0
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Bellman Equation

Value functions satisfy particular recursive relationships between value of a
state and its possible successor states.

Bellman Equation averages over all the possibilities, weighting each by its
probability of occurring.

V() = ) mals) ) p(s'ls,@) [r(s,,s") + yvg(s")]

a
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Optimal Policy

Optimal Policy is the policy, which maximizes the long-term expected reward
(the greatest expected return).

nm =7 if and only if v™(s) = v (s)

Optimal state-value function:

v*(s) = maxv™(s) forallseS
w

Optimal action-value function:

q*(s,a) = maxq™(s,a) forallseS and a e A(s)
YA
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Bellman Optimality Equation

Bellman Optimality Equation expresses the fact that the value of a state under
an optimal policy must equal the expected return for the best action for that
action.

Bellman Optimality Equation for v*
* _ *
v*(s) max q (s,a)

= max Z p(s'|s,a)[r(s,a,s") +yv.(s")]

aeA(s)

Bellman Optimality Equation for ¢~
q*(s,a) = Z p(s'|s,a) lr(s, a,s’) + ymaxq.(s’, a’)]
a
Sl
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Policy Iteration

We can obtain a sequence of monotonically improving policies and value functions.
E I E I E I E
77:0—)1]7-[0 — 1 —>vn1 Ty = ... 2T 2V,

E: evaluation, l: improvement

Each policy is guaranteed to be a strict improvement over the previous one.

Pseudocode of Policy Iteration:
* Initialization
v(s) €e R and m(s) € A(s) arbitrarily forall se S
Repeat
T«
* Compute the value-function using & by solving

Vi) < ) p(s'ls, ) [r(s, (), ) + yo(s)]
SI
* Improve the policy at each state
(s) « argmaxz p(s'|s,a) [r(s,a,s") +yv(s')]
a Py
Until m = n’
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Applying RL to induce pedagogical policies

» The behaviors of e-learning system can be considered as a sequential decision
process.

» Pedagogical strategies are the policies.

* We investigate the project of a team consisting of people of Carnegie Mellon
University, Arizona State University and University of Pittsburgh USA.

« They applied Policy Iteration to improve the effectiveness of an Intelligent
Tutoring system (ITS) by inducing pedagogical policies directly from an
exploratory corpus.

» The project has to phases:
1. Training phase:
- Defining state representation 5, action space 4, reward function ~.
- Collecting a training corpus I
2. Test phase: Evaluation of RL-induced policies.
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Exploratory Corpus

» Collecting the exploratory corpus by training human student on ITS that makes
random decisions.

e TheITS is Cordillera a natural language (NL) tutoring system which teaches
students introductory physics.
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Actions Set

e Two type of decisions:

= Elicit/Tell (ET): elicit the next step from Student or tell a student the next step
directly.

= Justify/Skip-justify (JS): ask students to justify a step they have taken.

e TheITS is Cordillera a natural language (NL) tutoring system which teaches
students introductory physics.
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Actions Set - ET/JS

(@) Justify Version (a) Elicit Version

1. T:Can we infer the direction of the velocity of the rock at T1 from 1. T: So let’s start with determining the value of v1.
the rock’s kinetic energy at T1? {ELICIT}

2. T: Which principle will help you calculate the rock’s
2. Stnope instantaneous magnitude of velocity at T17 {ELICIT}

3. S: definition of kinetic energy

3. T:Excellent! Please explain why. {JUSTIFY, ELICIT}

) ) . . L 4. T: Please write the equation for how the definition of kinetic
4. S:Only. the ma‘grln.tudc gf Ithc yclomty and not the direction of it is energy applies to this problem at T1 {ELICIT}

part of the definition of kinetic energy.
5. 8: kel =0.5%*m™*v1"2
. T:Excellent! Now that we know v1, - - .

ot

6. T: From KE1 = 0.5*m*v1°2, ...

(b) Skip-justify Version

1. T:Can we infer the direction of the velocity of the rock at T1 from (b) Tell Version
the rock’s kinetic energy at T17 { ELICIT}

1. T: So let’s start with determining the value of v1.

2. Sinope. 2. T: To calculate the rocks instantaneous magnitude of velocity at

3. T:Excellent! {Skip-JUSTIFY} T1, we will apply the definition of kinetic energy again. {TELL}

) 3. T: Let me just write the equation for you: KE1 = 0.5%m*v1"2.
4. T:Now that we know v1, ---. {TELL}

4. T: From KE1 = 0.5*m*v1°2, -
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State Representation (State features)

An effective state representation S should be accurate and compact model of the
learning context.

From MDP perspective, pedagogical strategies are simply a set of policies.
A state in the MDP might be a set of features.
|dentifying useful state features is challenging.

A series of feature selection procedure had been used:
» Four RL-based feature selection methods

= PCA-based feature selection method

= Four PCA and RL-based feature selection methods

= Random feature selection methods

Intelligente Lehrsyteme, 26/02/2018 17
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Reward function and Evaluation Metrics

» Expected cumulative reward:

n
N.
ECR =z ' V(S;
™ _1N1+---+Nn* (50)
1=

N;: number of time that S; appears, V(S;): value of state S;

The higher ECR, the better the policy is supposed to perform.

» Confidence Interval (Cl): 95% Cl [Lower_Bound, Upper_Bound]

 Hedge:
ECR

Upper_Bound — Lower_Bound

Hedge =

e Reward function:

Normalized learning gain (NLG)
posttest — pretest
NLG =

1 — pretest
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Features

e Autonomy (A): amount of work performed by student.
Exp: [tellsSinceElicitA]
« Background (BG): general background information about student.
Exp: [gender, age, MathSAT,...]
* Problem Solving Contextual (PS): Exp: [StepSimplicityPS]
* Performance (PM): Exp: [pctCorrectKCPM]
» Student dialogue: characterizes student language.
Exp: [stuAverageWordSD]
* Temporal Situation (T): time related information about problem solving
Exp: [durationKCBetweenDecisionT]
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Example

An example of selected ,best” policy on ET decisions
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5] -

[Policy:]

rule 6:

ECR:
95%CI:

rules 1-5:

rules 7-8:

{StepSimplicityPS x TuConceptsToW ordsPS

TuAvgWordsSesPS}
[A:] = {Elicit, Tell}

— Elicit

—_— = =D
)
'

:0;1:0} — Tell

0:1:1
1:0:0

] — Either Elicit or Tell

14.25
10.04, 18.12]

X
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Procedure
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All participants in this project experienced the same five standard phases:

1.

vih WnN

Background survey
Pre-training
Pre-test

Training

Post-test

Intelligente Lehrsyteme, 26/02/2018

Defined Feature
features occurrences

1 Autonomy (A) 5 8

2 Background (BG) 5 1

3 Performance (PM) 12 5

4 Problem Solving Contextual (PS) 15 30

5 Student Dialogue (SD) 10

6 Temporal Situation (T) 3 7

7 Total 50 59

Occurrence of six category features in the final NormGain tutorial policies.
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Summary

1.

Choose an appropriate Reward measure, an appropriate list of Features for the
state representations, and identify a set of reasonable system Decisions.

Build an initial training system that collects an exploratory dataset.

Apply feature selection methods, to select a subset of features that capture the
most effective factors in the learning environment. Then use the exploratory
corpus to build an empirical MDP model for the subset of state features.

Compute the optimal dialogue policy (by Policy Iteration) according to this
learned MDP.

Add the learned policy to the system and evaluate the policy on a new group of
users.
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Thanks for your Attention!
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