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The development of cut-free calculi for expressive logics, e.g. quantified non-classical logics, is
usually a non-trivial task. However, for a wide range of challenge logics there exists an elegant
and uniform solution: By modeling and studying these logics as fragments of classical higher-order
logic (HOL) [1, 4] — a research direction I have recently proposed [3] — existing results for HOL
can often be reused. We illustrate the idea with quantified conditional logics [7].

HOL. Assuming a set of simple types T , the syntax of HOL is given as A,B ::= cα | Xα |
(λXαAβ)α�β | (Aα�β Bα)β | (¬o�o Ao)o | (Ao ∨o�o�o Bo)o | (Π(α�o)�o Aα�o)o, where α, β ∈ T ,
o ∈ T is the type of truth values {>,⊥}, cα are typed constant symbols declared in a signature
Σ, Xα are typed variables, and ¬, ∨, and the Πα are the primitive logical connectives (binder
notation ∀XαA is used as an abbreviation for Π(α�o)�oλXαA). Further logical connectives and
Leibniz equality

.
= can be defined (e.g. Aα

.
= Bα := ∀Pα�o(¬PA∨PB)). The semantics of HOL,

here we assume Henkin semantics, is well understood; cf. [1, 4] and the references therein.

A Cut-free Sequent Calculus for HOL. Consider the following one-sided sequent calculus Gβfb [5]
(∆ and ∆′ are finite sets of β-normal closed formulas and ∆∗A denotes the set ∆∪{A}, cwffα(Σ)
is the set of closed terms of type α, and A↓β denotes the β-normal form of A):
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Funct. and Boolean Extensionality
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Initialization and Decomposition of Leibniz Equality
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Theorem 1 (cf. [5]): |=HOL Ao iff `Gβfbcut-free Ao

That is, Gβfb is cut-free, and sound and complete for HOL with Henkin semantics. While HOL
usually considers base types i and o only, we assume three disjunct base types below. The type
i is now associated with possible worlds and the additional type u stands for individuals. o still
denotes the Booleans. This modification is non-critical and Theorem 1 remains valid.

Exemplary Challenge Logic: Quantified Conditional Logic. As an exemplary challenge logic we
consider quantified conditional logic (QCL). The syntax of QCL is ϕ,ψ ::= P | k(X1, . . . , Xn) |
¬ϕ | ϕ∨ψ | ϕ⇒ ψ | ∀coXϕ | ∀vaXϕ | ∀Pϕ, where the P resp. Xi are propositional resp. individual
variables, and the symbols k are n-ary constants. ⇒ represents the modal conditional operator,
and ∀coXϕ and ∀vaXϕ denote constant domain and varying domain quantification. Regarding
semantics we assume selection function semantics [7]. QCLs have many many applications and,
interestingly, they subsume normal modal logics (�ϕ can be defined as ¬ϕ⇒ ϕ).
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Modeling QCLs as fragments of HOL. QCL formulas ϕ can be identified with certain HOL terms
(predicates) ϕi�o of type i � o. The latter type is abbreviated as τ below. The HOL terms ϕτ can
be applied to terms of type i, which are assumed to denote possible worlds. The core idea of the
embedding is captured by the following set of equations, resp. set of HOL axioms, called AX:

¬τ�τ = λAτλXi¬(AX)
∨τ�τ�τ = λAτλBτλXi(AX ∨BX)
⇒τ�τ�τ = λAτλBτλXi∀Vi(f X AV → B V )
Πco

(u�τ)�τ = λQu�τλVi∀Xu(QX V )

Πva
(u�τ)�τ = λQu�τλVi∀Xu(eiw V X → QX V )

Π(τ�τ)�τ = λRτ�τλVi∀Pτ (RP V )

¬τ , ∨τ�τ�τ , ⇒τ�τ�τ , Πco,va
(u�τ)�τ and Π(τ�τ)�τ realize the QCL connectives as ‘world-lifted’ HOL

terms encoding selection function semantics. As before, binder notation is avoided and appro-
priately defined Π-connectives in combination with λ-abstraction are used instead, e.g., QCL
formula ∀coϕ is associated with Πco

(u�τ)�τλXuϕτ . Constant symbol f in the mapping of ⇒ is

of type i � τ � τ . It realizes the selection function. Constant symbol eiw (for ‘exists in world’),
which is of type (τ � u) � τ , is associated with the varying domains. The interpretations of f and
eiw are chosen appropriately in HOL. Moreover, propositional and individual QCL variables P
and X are associated with corresponding HOL variables Pτ and Xu, and the n-ary QCL constant
symbols k are identified with HOL constant symbols kun�τ . For grounding the lifted formulas
ϕτ , the notion of validity is introduced as vldτ�o = λAτ∀Si(AS). For the varying domains, the
non-emptiness axiom ∀Wi∃Xu(eiwW X) is additionally postulated and included in the axiom set
AX. Soundness and completeness of this embedding of QCL in HOL has been studied in [2].

Theorem 2 (cf. [2]): |=QCL ϕ iff AX |=HOL vldϕτ

Cut-free Sequent Calculus for QCL. Combining the above results we obtain a cut-free sequent
calculus for QCL.

Theorem 3 : |=QCL ϕ iff AX `Gβfbcut-free vldϕτ

However, we need to point to the subtle issue of cut-simulation (effective simulation of the cut
rule in a cut-free calculus) in HOL, cf. [5] for details. For example, if the equations in AX are
formalized as Leibniz equations, then cut-simulation applies and cut-freeness of Gβfb is practically
worthless. To avoid the problem, the calculus Gβfb can be extended for primitive equality, cf. [6],
and primitive equality can then be used for stating the axioms.

When postulating additional axioms for the embedded logics in HOL (e.g. for QCL axiom
ID: ∀ϕ(ϕ ⇒ ϕ)), cut-simulation may nevertheless apply. In some cases, however, the semantical
conditions which correspond to such cut-strong axioms can be postulated instead in order to
circumvent the effect. This is e.g. possible for many modal logic axioms, but it does not apply to
ID since the semantical condition that corresponds to ID, ∀Aτ∀Wi(f WA ⊆ A), is still cut-strong.
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